Polynomials

What is a Polynomial?

$$
\begin{aligned}
& a x^{n}+b x^{n-1}+c x^{n-2}+\cdots \\
& a, b, c \cdots \rightarrow \text { cofecients } \\
& \text { (Real no.) }
\end{aligned}
$$

$x \rightarrow$ variable

$$
\text { Natural no: }<^{n \rightarrow \text { exponent }}=
$$

What is a Polynomial?

$$
\begin{gathered}
\frac{1}{x^{4}-10 x^{2}-\sqrt{10} x+11} \sqrt{x-3}, 4 x^{2} \\
(x)^{1 / 2} \times
\end{gathered}
$$

Degree of a Polynomial
thatent exponent of in var able

$$
a x^{n}+b x^{n-1}+c x^{n-2}+\cdots
$$

Degree of a Polynomial

$$
\downarrow_{5}^{x^{5}-x^{6}+\frac{1}{2}+4 x} \int_{1}^{2}
$$

Linear Polynomial \rightarrow Degree of poly $=1$

Degrees $=1$

Quadratic/Cubic Polynomial

degree $=2$
degre $=3$

Additional Problems

Find the degree
is $\left(x^{5}\right)-x^{2}+3 \longrightarrow 5_{5}^{4} \rightarrow 5$
(iv (2) $\left(y^{2}\right)-\left(y^{3}\right)+\left(y^{8}\right) \longrightarrow 2 \longrightarrow 3 \rightarrow 8$
(ii) $2 x^{\circ}$

Additional Problems

State whether foll. exp are polynomials or not?
(i) $4 x^{2}-3 x+7$
(ii) $y^{2}+\sqrt{2} \rightarrow 2$
(iii) $y+2 / y \rightarrow x$

Cog \square
(iv) $3 \sqrt{t}+\sqrt{2} t \rightarrow 0$
variable natural \square

Additional Problems

Degree of a Polynomial
(i) $x^{2}+x \rightarrow 2$
(ii) $x-x^{3} \rightarrow 3$
(iii) $7 x^{3} \rightarrow 3$
(iv) $y+y^{2}+4 \rightarrow 2$

Additional Problems

Identofy (crear, cuble, aund
(i) $x^{2}+x \longrightarrow$ Qued
(ii) $x-x^{3} \longrightarrow$ cubli
(iii) $7 x^{3} \longrightarrow$ Cubic
(iv) $y+y^{2}+4 \longrightarrow$ Quod

Value of a Polynomial \rightarrow a given value $q x$.
$p(x)$ for o given value $g x$.

$$
p(x)=x^{3}-4 x^{2}+10 x
$$

$x=2$ find the vole $g p(x)$

$$
\begin{aligned}
p(2)=2^{3}-4 \times 2^{2}+10 \times 2 & =8-16+20 \\
& =12
\end{aligned}
$$

at $x=5, p(x)=0$
Zero of a Polynomial

$$
x_{2} 51
$$

$$
\text { fat } x=5, \quad 2 x-10=0
$$

value of to variable (value $q x$)
for which $p(x)=0$

$$
p(x)=2 x-10 \quad p(x)=0 \quad \begin{aligned}
& 2 x-10=0 \\
& 2 x=10 \\
& x=\frac{10}{2} \\
& =5
\end{aligned}
$$

Zero of Polynomial - Contd.
$x=5$ is in zero 9 in e poly nominal $2 x-10$.

$$
\begin{gathered}
p(x)=x^{2}-5 x+6 \\
p(x)=0
\end{gathered}
$$

$x=2$ and $x=3$ are the zens q the polynomial Zero of Polynomial - Contd. $\quad x^{2}-5 x+6$

$$
\begin{aligned}
& x^{2}-5 x+6=0 \\
& x^{2}-3 x-2 x+6=0 \\
& x(x-3)-2(x-3)=0 \\
& (x-3)[x-2]=0 \\
& x=2,3
\end{aligned}
$$

\rightarrow graphical method
Geometric Manning - Zero of Polynomial

Geometric Meaning - Contd.

Geometric Meaning - Contd.

The cree a not moe hing x axis

Geometric Meaning - Contid.

Geometric Meaning - Contd.

Sum / Product of Zeros

Relationship
bel Bens of polynomial and is coefkcents

Sum / Product of Zeros

$$
\begin{aligned}
& a x^{2}+b x+c=0 \rightarrow \text { Quadratic poly } \\
& a x+b=0 \rightarrow \text { uneari } \\
& \downarrow
\end{aligned}
$$

Sum / Product of Zeros
α, β are zeros q

$$
\begin{array}{r}
a x^{2}+b x+c=0 \\
\alpha+\beta=-b / a \\
\alpha \beta=c / a
\end{array}
$$

Exercise 2.2

1. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.
(i) $x^{2}-2 x-8$
(ii) $4 s^{2}-4 s+1$
(iii) $6 x^{2}-3-7 x$
(iv) $4 u^{2}+8 u$
(v) $t^{2}-15$
(vi) $3 x^{2}-x-4$

$$
\alpha=4, \quad \beta=-2
$$

Exercise 2.2

$$
\alpha+\beta=-b / a \quad \alpha \beta=c / a
$$

$$
\begin{aligned}
& x^{2}-2 x-8=0 \\
& -8,-2 \\
& -4,2 x x^{2}-4 x+2 x-8=0 \\
& x(x-4)+2(x-4)= \\
& (x-4)(x+2)=0 \\
& x=4,2
\end{aligned}
$$

$$
\begin{aligned}
& 4+(-2)=2=-\frac{(-2)}{1}=2 / 1 \\
& 4 x-2=-8
\end{aligned}
$$

$$
4 x-2=-8
$$

$$
=\frac{-8}{1}=\frac{-8}{2}
$$

Exercise 2.2

1. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.
(i) $x^{2}-2 x-8$
(ii) $4 s^{2}-4 s+1$
(iii) $6 x^{2}-3-7 x$
(iv) $4 u^{2}+8 u$
(v) $t^{2}-15$
(vi) $3 x^{2}-x-4$

Exercise 2.2

Exercise 2.2

1. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.
(i) $x^{2}-2 x-8$
(ii) $4 s^{2}-4 s+1$
(iii) $6 x^{2}-3-7 x$
(iv) $4 u^{2}+8 u$
(v) $t^{2}-15$
(vi) $3 x^{2}-x-4$

Exercise 2.2

$$
\begin{gathered}
a x^{3}+b x^{2}+c x+d=0 \\
\alpha+\beta+\gamma=-b / a \\
\alpha \beta+\beta \gamma+\gamma \alpha=c / a \\
\alpha \beta \gamma=-d / a
\end{gathered}
$$

Division of a Polynomial

Division of a Polynomial

