Electromagnehsm

Cnarge
\rightarrow connnsic property.
very fundemental quantity
symbol - θ Two typen
unct - coloumb. tre -re
tyne - Scalar
Like chargen repel unluke chorgen aliract

Conservation of charge
charge q an collated $\frac{\text { System }}{\downarrow}$ is constant.
not a body bul a system
we need to get o feel of it. How do we get charge? \rightarrow When electron transfers from one body toanoker.
From proton and electron.

$$
\begin{aligned}
q_{1}+q_{2} & =0+0 \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
& q_{1}+q_{2} \\
& =+1-1=0
\end{aligned}
$$

$q_{1}=+1$
$q_{2}=-1$

Olvantization of Charge

$$
\left\{\begin{array}{l}
\text { Available in } \\
\text { Sired amount }
\end{array}\right\}
$$

i) The smallest charge that can exist independently is charge is el

$$
\begin{aligned}
& 1 e, 2 e, 3 e, 4 e \ldots \\
& -1 e,-2 e,-3 e,-4 e \ldots
\end{aligned}
$$

$$
\hat{e}=1.6 \times 10^{-19} \mathrm{C}
$$

$$
Q= \pm n e
$$

Q) Can a charge of $1.8 \times 10^{-18} \mathrm{C}$ be given to a body?

Charging by conduction \rightarrow drrect conlact
A body charged by baving derect conlact with anothes body.
eg:- Scall and haw + papers
sex mesed + plastic rod
suk mread + glan rod

Chourging by Induction \rightarrow no durect contact

Polanuzation of chorges.

When a higb
posinve charge
brought near a body negalis chorges tend to concentrats to one sode trus creatring a Polanization of chorges.

Important Questions
Board exam perspective

1) What does $q_{1}+q_{2}=0$ signify in electrostatics?
2) What kind of charger are produced when a glass rod is rubbed will sauk?
3) Can a body have charge of $0.8 \times 10^{-19} \mathrm{C}$. Justly your answer with proper explanations.
4) Give any Two points of difference bel'n charge \& mass
5) Explain:- Charging by Induction Charging by Conduction.
6) List 6 proportion of electric charge

Numericals - Level 1.

1) Fond the total charge on tho system conlaenung $+1,+2,+4,-5,-2$. (i nfc)
2) A metal sphere has o charge of $-6 \mu C$. If $5 \times 10^{12} e^{-1}$ are removed from it, what is the final charge?
3) How many electrons are needed to achieve IC g electric charge?

Coloumbs law

* we know that luce charges repel umluce charges attract.
* purpose q coloumbs law is to quantify this force.

Statement

Th i fore q allraction bet'n two charges is directly proportional to product of tho charges and inv. prop. to the square of tho distance bet' n them.
$F \propto q_{1} q_{2}$ and $F \propto \frac{1}{r_{2}}$

The value of K as equal to 9×10^{9}
Th value (K) changer from one medium to another.

Numencals - Level 1

1) What is the fore bel'n two charged spheres having charges $2 \times 10^{-7} \mathrm{C}$ and $3 \times 10^{-7} \mathrm{C}$ plowed 30 cm apart on ar?
2) Me electrostalk for bel two spheres q charge 0.4 Mc and -0.8 MC in 0.2 N find the
a) distana bern charges
b) Nature and value of fore On $2^{\text {nd }}$ sphae du to first.
3) A free pith ball of 8 g carries $a+v e$ charge of $5 \times 10^{8} \mathrm{C}$. What must be to nature and magnitude of charge to be given to o second ball placed 5 cm below tho first ball so that ct remains stationary.

Board exam perspechve Questions.
(1) If the distance between two equal point charges are double, and their undindual charges are also doubled, what would happen to the fore between them?
(2) Define colowenb as o cunt charge
(or)
Defoe SI uni q charge.
(3) Two chargen are given such that $q_{1} q_{2}<0$, what is the nalure of fore between them?
(4) What are the conditions for applying colocurbs law)? \rightarrow central + Stallónary
(5) Slat colocimbs law in eledrostatics Mention th, sunclartien and dissumbathis between electrostatic and gravitational fore
(6) Expren Coloumbs law on vector form with tho help of diagram

Vector form

Principle of Super position
This is to be considered when we have mulhple charges placed near each other.

Here charge $q_{\text {, expenences two fores }}$ $d w$ to charge q_{2} and q_{3}.
$\vec{F}_{i 2}$ - Fore in $q_{1} d u$ to q_{2}
F_{13} - Fore in q_{1} de to q_{3}
net for on $q_{1} n$

$$
\overrightarrow{F_{\text {net }}}=\vec{F}_{12}+\vec{F}_{13}
$$

Numencal Problems- Level I
(1) Three charges $10 \mu C, 5 \mu C$ and $-5 \mu C$ are placed in our al the tonne corners A, B, C of an equilateral triangle of side 10 cm . Find the fore exp. by charge placed at corner A.
(2) $A B C$ is an equilateral triangle. g side tom. D is the mid point of $B C$. Charges of $100,-100$, $75 C$. are placed at B, C, D respectively. What is form expenenced by $i c$ positive charge placed at A?

From modes $A B C$ Pg 21 ,

$$
1,2,3,7,8,13,11,18,24,25,
$$ 26, 2A, 30

Concept of perminurty

$$
F=\frac{k q_{1} q_{2}}{r^{2}}
$$

$$
k=\frac{1}{4 \pi \varepsilon}
$$

$\varepsilon \rightarrow$ permitively of meduin

He $\varepsilon \hat{\uparrow} \Rightarrow F \downarrow$ or

Some one who controls the fore bed'n charges.

$$
\text { lie } f \propto \frac{1}{\varepsilon}
$$

$\varepsilon_{\text {mod }}>\varepsilon_{\text {aw }}$
\Rightarrow Fled < Far
$\varepsilon \rightarrow$ minimum for vaccum(aur
$F \rightarrow$ max. for vacaum/air.

$$
\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{c}^{2} / \mathrm{Nm}^{2}
$$

Relative Permithuly (Delecinc constant)
$\varepsilon_{r}=\frac{\varepsilon_{m}}{\varepsilon_{0}} \rightarrow\left[\begin{array}{l}\text { Ratio of permitivily } \\ \text { any medium to per } \\ \text { of vaccum/ar. }\end{array}\right.$
Sunce E_{0} han men. value of \mathcal{E},
$\varepsilon_{r}>1 \quad \varepsilon_{r}=81 \rightarrow$ Thu means fore
Seducer by 81 times
$\varepsilon_{r}=9 \rightarrow$ fore reduces by 9tumis

Problem

$A_{n s} \rightarrow C_{r}=8$

$$
=
$$

If distance bet'n charges is halved, and med. es changed. Fore is also halved. Fond Er of medium.

Elednc Field

A charge creates a field around it called cledinc field.

When another charge is brought into tries field, d expenences a fore, which is quantified by coloumbs law.

Definition:-
cleonic field due to a charge is the space around the charge in which any other charge placed will experience an eledrostalic fore.

Concept of elecine freld Inlensity

Def:- Elecinc fiadd onlensity at a poont is
SI und $^{-}$ the fore expenenced per cinct positive test charge placed al thal point w/o disturbung / changeng the position of the souru charge

$$
\begin{aligned}
& =\frac{\text { Fone }}{\text { change }} \\
& =\frac{N}{C} \\
& =N C^{-1}
\end{aligned}
$$

Erdic Field dw to a point charge at any given pount

$$
\begin{aligned}
\vec{\epsilon} & =\frac{\vec{F}}{q_{0}} \quad q_{0} \rightarrow \text { test charge } \\
\Rightarrow \vec{\epsilon} & =\frac{k \theta_{1} q_{0}}{r^{2}} \times \frac{1}{q_{0}} \quad \text { sounu charge } \\
& =\frac{k \theta_{1}}{r^{2}} \\
& \vec{\epsilon}=\frac{1}{4 \pi \varepsilon_{0}} \times \frac{Q}{r^{2}}
\end{aligned}
$$

vedor form:-

$$
\vec{\epsilon}=\frac{1}{4 \pi \varepsilon_{0}} \times \frac{\theta_{1}}{\left|\vec{r}_{1}-\vec{r}_{2}\right|^{3}} \times\left(\vec{r}_{1}-\vec{r}_{2}\right)
$$

Let un understand true concept wits the help of a problem.

Fend the electric freedentensity by $10 \mu \mathrm{c}$ of charge at a point 3 cm from the charge as shown on figure.

$$
\begin{aligned}
\vec{E}_{1} & =k \times \frac{q_{1}}{r^{2}} \\
& =\frac{9 \times 10^{9} \times 10 \times 10^{-6}}{\left(3 \times 10^{2}\right)^{2}}=\frac{9 \times 10}{A} \times \frac{10^{9} \times 10^{-6}}{10^{-4}} \\
& =10 \times 10^{7}=10^{8} \mathrm{~N} / \mathrm{c}
\end{aligned}
$$

Fend the electric field intensity by -10 c c of charge at a point 3 cm from the charge as shown on figure.

$$
\vec{\epsilon}_{2}=\frac{k \times q_{2}}{r^{2}}=\frac{9 \times 10^{9} \times 10 \times 10^{-6}}{\left(3 \times 10^{2}\right)^{2}}=10^{8} \mathrm{~N} / \mathrm{c}
$$

In above two questions we found intensity of electric field at a point in to electro field

Elecinc field dew to discrete dismbution of charges.
meaning of discrete $\} \rightarrow \begin{aligned} & \text { Many charges placed }\end{aligned}$ distribution g charges at diff positions.

We can see that q_{2} is present on the field q q_{1} and q_{3}
Fred of q_{3}
So, we can undenoland trot charge q_{2} well expenencu for due to field from q_{1} and q_{3}

In such situations we make use of concept of prenapl of superposition.

Let us understand the concept with the help q a problem.
(81) Two charger A and B qualues 10 lc and-10le, are kept 10 cm apart. Find the ekelnc field intensity at a point P on the tr bisector of $A \dot{B}$ at a distance 12 cm from its mid point.

Properties of Elednc Field Lines

1) Field unes are 'Imaginary' lines en a region of space and time along which a free positive charge would move of allowed to do so.

2) They originate al a posinve charge and formunate at a negative charge.
3) Thy do not form a closed loop.
4) They do not terminate en space
5) The number of field lines ar subjective bo the density of field lines as objective
6) The no. g field lines from / to acharge $\propto \mid$ Magnitude of charge|
(91)

Find the value of $\frac{q_{1}}{q_{2}}=$?
$\frac{\left|q_{1}\right|}{\left|q_{2}\right|}=\frac{+8}{-4}=-2$
a) 2
c) $-1 / 2$
b) $1 / 2$
4) -2
(Q2) The held lines are Symmetric about the line jouncing two charges.

Fund which is
q. greater value q_{1} or q_{2}

density of field lines in q_{1} is ten when compared q_{2}. So q_{2} has higher value

Electric Dipole
Two equal and opposite charges separated by a small distance

Dipole moment

(Qi) Fund the net dipole moment for the system.

$$
\begin{aligned}
& P_{2}=q a \\
& \uparrow P_{1}=q a \\
& P_{\text {nat }}=\sqrt{p_{1}^{2}+P_{2}^{2}} \\
& P_{\text {nat }}=\sqrt{2} q_{a}
\end{aligned}
$$

Eledinc Field du to dipole
\rightarrow on the axis of the dipole.
\rightarrow at distance x from centre of dipole.

Ir is logical to say $\epsilon_{2}>\epsilon_{1}$.
(distance to x from $+q$ a les than $-q$).

$$
\begin{aligned}
\epsilon_{1} & =\frac{k q}{(x+L)^{2}} \quad \epsilon_{2}=\frac{k q}{(x-L)^{2}} \\
\epsilon_{\text {neal }}=\epsilon_{2}-\epsilon_{1} & =k q\left[\frac{1}{(x-L)^{2}}-\frac{1}{(x+L)^{2}}\right] \\
& =k q\left[\frac{(x+L)^{2}-(x-L)^{2}}{(x+L)^{2}(x-L)^{2}}\right]
\end{aligned}
$$

$$
\begin{aligned}
= & k q\left[\frac{4 x L}{\left(x^{2}-L^{2}\right)^{2}}\right]=\left[2 k q \frac{2 x L}{\left(x^{2}-L^{2}\right)^{2}}\right] \\
\Rightarrow \quad \epsilon_{\text {nd }} & =\frac{(q 2 L) k \times 2 x}{\left(x^{2}-L^{2}\right)^{2}}=\frac{2 k p x}{\left(x^{2}-L^{2}\right)^{2}}
\end{aligned}
$$

Generally $\quad x \gg l \Rightarrow l^{2} \approx 0$

$$
\Rightarrow \text { Encl }=\frac{2 k P \times x}{x^{4}} \Rightarrow \text { Enol }=\frac{2 k p}{x^{3}}
$$

elcdñc feed due to a dipole along axis is given by $\frac{2 k p}{x^{3}}$.
vecóv form.

$$
\begin{gathered}
\vec{\epsilon}=\frac{2 k \vec{p}}{x^{3}} \\
=\epsilon_{七}
\end{gathered}
$$

der. of dipole moment dur to right
Thu u the duechin of Electric field owen pontes near to tue charge

Electric Field du to dipole

\rightarrow on $1 r$ bisector of duple
\rightarrow at distance x from centre of dipole.

$$
\begin{aligned}
& \epsilon_{1}=\frac{k q}{r^{2}}=\frac{k q}{x^{2}+l^{2}}=\frac{k q}{x^{2}+l^{2}} \times \frac{2 x l}{\sqrt{x^{2}+l^{2}}} \\
& \epsilon_{2}=\frac{k q}{r^{2}}=\frac{k q}{x^{2}+l^{2}} \\
& \epsilon_{\text {nev }}=\epsilon_{1} \cos \theta+\epsilon_{2} \cos \theta \\
& =\frac{k q}{x^{2}+l^{2}} \times 2 \cos \theta \\
& =\frac{k \times(q \times 2 l)}{\left(x^{2}+l^{2}\right)^{3 / 2}} \\
& =\frac{k p}{\left(x^{2}+l^{2}\right)^{3 / 2}} \\
& \begin{array}{r}
G_{\text {rel }}=\frac{K p}{\left(x^{2}+l^{2}\right)^{3 / 2}} \quad \text { Bal } x>2 l \\
\text { Gnu }=\frac{K p}{x^{3}}
\end{array} \\
& \text { opp to } \vec{p} \quad \vec{\epsilon}=\frac{-k \vec{p}}{x^{3}}
\end{aligned}
$$

As a conclusion,

$$
\left(E_{\text {net }}\right)_{\text {axial }}=2 \times\left(\epsilon_{\text {nat }}\right)_{\text {equatorial }}
$$

Torque on an electric dipole
placed is a unform elecinc held.

The net force acting on the dipole in a uniform elan field $=0$.

But a torque is produced here as two fores are positioned not along the same line of action.
\rightarrow Torque produced

Translational equebrim Rotational eq x

Torace $=$ Fone \times Ir distance

$$
=q E \times(A B) \rightarrow \text { see fogure. }
$$

$$
=q E \times l \sin \theta
$$

Direction of $\vec{\tau}$
So, $\overrightarrow{p x} \vec{E}$
Bul we have two formes,

$$
\begin{aligned}
\Rightarrow & =\overline{c_{1}}+\tau_{2} \\
& =q E l \sin \theta+q E l \sin \theta \\
& =q(2 l) \in \sin \theta \\
\tau & =p \in \sin \theta
\end{aligned}
$$

$$
\Rightarrow \text { accepr }
$$

$$
\vec{\tau}=\vec{P} \times \vec{E}
$$

(Q1) When is torque maximum?
Q2) When n torale minimum/zero?

stable equabrum
Concep) \rightarrow Seturn back
censtable
equabrum concept

Concept of Area redór
$\hat{n} \longrightarrow a$ unit vector ir to surface.

$$
\overrightarrow{d s}=\hat{n} \times d s
$$

$d s \rightarrow$ magnitude of area $|\overrightarrow{d S}|=$ area of shape
$\hat{n} \rightarrow$ der. g unit vector

$$
\vec{A} \times \vec{B}=\text { area vector (Ir to } \bar{A} \& \vec{B})
$$

For cooked surfaces we tace the one going outside the volume

Electinc Flux
Electric Flux trrough a surface unsid an elednc field represents the tobal no. qelectuc field lines of fone crossing the surface en a derection normal to it.

The no. of elednc freld lenes passing Ir ly to a plane surface

Density of α untensily of Leld unen eledincfield

$$
\epsilon_{2}>\epsilon_{1}
$$

\rightarrow Conneet trese concepis to connect
und of clednc Plex - $\mathrm{Nm}^{2} \mathrm{C}^{-1}$

$\epsilon \cos \theta$ can creale electre thax bul no $\operatorname{\epsilon sin} \theta$ (asctar $\left.110^{\circ}\right)^{\circ}$

(9)

$$
\begin{aligned}
\phi & =\vec{\epsilon} \cdot \vec{A} \\
& =\epsilon \times A \times \cos 30^{\circ} \\
& =\epsilon \times a^{2} \times \frac{\sqrt{3}}{2} \\
\Rightarrow \phi & =\frac{\sqrt{3} \epsilon a^{2}}{2}
\end{aligned}
$$

(Q2)

$$
\begin{aligned}
\phi & =\hat{\epsilon} \cdot \hat{A} \\
& =\epsilon \times a b \times \cos 4 \hat{s} \\
& =\epsilon a b * \frac{1}{\sqrt{2}} \\
\phi & =\frac{\sqrt{2} \epsilon a b}{2}
\end{aligned}
$$

(Q3)

$$
\vec{A}
$$

$$
\begin{aligned}
\phi & =\vec{\epsilon} \cdot \vec{A} \\
& =\vec{\epsilon} \cdot \vec{A} \\
& =\vec{\epsilon} \times \pi r^{2} \times \cos 90^{\circ} \\
\phi & =\hat{0}
\end{aligned}
$$

$$
\hat{A}
$$

$$
\begin{aligned}
\phi & =\vec{\epsilon} \cdot \vec{A} \\
& =\epsilon \times \pi r^{2} \times \cos 60^{\circ} \\
\phi & =\frac{\pi \epsilon r^{2}}{2}
\end{aligned}
$$

we have 6 surfaces. Let an fund electric flux mo' each of them.
PRS $(-\hat{K})$

$$
\phi_{1}=\hat{\epsilon} \cdot \hat{A}=\epsilon x \ln \times \cos 90^{\circ}=0
$$

$A B C D(\hat{K})$

$$
\phi_{2}=\hat{\epsilon} \cdot \hat{A}=\epsilon \times \ln \times \cos 90^{\circ}=0
$$

$P Q A B(j)$

$$
\begin{aligned}
& \phi_{3}=\hat{\epsilon} \cdot \hat{A}=\epsilon \times l b \times \cos 90^{\circ}=0 \\
& \text { RSCD }(-\dot{j})
\end{aligned}
$$

$$
\phi_{4} ? \vec{e} \cdot \vec{A}=e \times l b \times \cos 90^{\circ}=0
$$

$B \cos \theta(+i)$

$$
\phi_{5}=\hat{E} \cdot \vec{A}=\epsilon \times b h \times \cos 0^{\circ}=\epsilon b h
$$

PARD $(-i)$

$$
\phi_{6}=\vec{\epsilon} \cdot \vec{A}=\epsilon \times b h \times \cos 10^{\circ}=-\epsilon b h
$$

Tolar flux $=0+0+0+0+(-b h+(-E b h)$

$$
=\underline{\underline{0}}
$$

Total flux inside a clokd sufou $\omega \%$ any charge is equal to zero.

If Jam considering a cylinder,

$$
\text { Tole flex }=0 \quad\binom{\text { (radial }}{\text { der cane }}
$$

Electric flex inside a sphere

$$
\begin{aligned}
& \xrightarrow[R]{(q)} \in \\
& \epsilon=\frac{1}{4 \pi \varepsilon} \times \frac{q}{R^{2}} . \\
& \phi=\vec{E} \cdot \vec{A} \\
& d \phi=\vec{E} \cdot \overrightarrow{d A} \\
& =\epsilon \times d A \times \cos 0^{\circ} \\
& \int d \phi=\int E d A \\
& \Rightarrow \phi>\int E d A \\
& \phi=E x \int d A \\
& =E \times 4 \pi R^{2} \\
& =\frac{1}{2 \pi \varepsilon_{0}} \times \frac{q}{R^{2}} \times 4 \pi R^{2} \\
& \Rightarrow \phi=\frac{q}{\varepsilon_{0}}
\end{aligned}
$$

Gauss Law
Net eledn̄c field tho' a closed surface is $\frac{1}{\varepsilon_{0}}$ times the net charge enclosed by the surface.

$$
\phi_{\text {closed }}=\frac{q_{\text {net cuscol }}}{\varepsilon_{0}}=\oint \in d A
$$

We derived this un last page

\rightarrow get the concept. The same Hex passes sro' all spheres. So net elastic flex does not depend on area. \downarrow
even shan has no significance.

Important Points to note

1) Th surface which enclosed a charge, is called a gaussian surface.
2) Net flux trough a surface dew to an external surface is always equal to zero.

$\epsilon_{A} \rightarrow$ electne field
q_{3} at dw to $q_{1} q_{2} q_{3}$.

Fenx dw to $q_{1} q_{2}$
1.e.

$$
\phi=\frac{q_{1}+q_{2}}{\varepsilon_{0}}=\oint \vec{\epsilon} \vec{\downarrow} \vec{A}
$$

This \vec{E} uncludes q_{1}, q_{2}, q_{3}
(3) No nel elecinc flux trno' a surgace dee to tru preseno of a charge oulside to suyface.

fleux enlering tron.' leaver thro' 2. and enterang tron'3, leaver ton 4.

$$
\begin{aligned}
& \phi_{1}=\epsilon_{1} \times d A \cos 180^{\circ} \quad \text { Bul } \epsilon=\epsilon_{2} \\
& \phi_{2}=\epsilon_{2} d A \cos 0^{\circ} \quad \Rightarrow \quad \phi_{1}+\phi_{2}=0
\end{aligned}
$$

Gauss law is always applucabl but not always useful.
D) The gaussian surface should be symmetric about charge / charge disinbution.
2) The $\vec{\in}$ held must be symmetne (equal /constant) at all points of gaussian suyoce.
3) θ must be same al all points $(\vec{E} \& \vec{A})$ of two suyoce.
4) Gaussian surfoc must not pass trio any point charge.
(81)

Find the value of Bun from this cylinder.
 So hay cylinder
is $\frac{q}{2 \varepsilon_{0}}$
(12) Fund trio value of tux trio a hemi-sphere.

Through a sphere $\frac{q}{\varepsilon_{0}}$.
hemi-sphere $\frac{q}{2 \varepsilon_{0}}$
(Q3) Fond tho elecinc flex de to q from tins plate:

\rightarrow This Could be onside a cube q side a. and charge al dJ centre
\Rightarrow tron' $\operatorname{tnn} p$ all $\sim \frac{q}{6 \varepsilon^{\circ}}$
(84)

Telex tiro' shooed region when q in in middle $\Rightarrow \frac{q}{6 \varepsilon_{0}}$.
(815)

Flex trio thu aube a Complete cube Such trail q become al centre
fur too each face.

$$
\rightarrow \frac{q}{8 \times 3 \varepsilon_{0}}=\frac{q}{2 q \varepsilon_{0}}
$$

(Q, 6

$\phi_{\text {cons }}$ is a pant q sphere.

$$
\phi_{\text {con }}=\frac{q}{2 \varepsilon_{0}}(1-\cos \theta)
$$ when charge is al veskx.

(87)

Thre' tru Shaded ragion is

$$
\frac{q}{q}(1-\cos 0) \times 2
$$

$\phi_{\text {Tolal }}=\frac{q}{\varepsilon_{0}}$.

$$
\begin{aligned}
& \Phi_{C B A}=\frac{q}{\varepsilon_{0}}-\frac{q}{\varepsilon_{0}}(1-\cos \theta) \\
&=\frac{q}{\varepsilon_{0}}(1-1+\cos \theta)=\frac{q}{\varepsilon_{0}} \times \cos \theta \quad \theta=45^{\circ} \\
& \Rightarrow \frac{q}{\sqrt{2} \varepsilon_{0}}
\end{aligned}
$$

Find trueledric flux av to q tro' CSA?
$\frac{q}{\varepsilon_{0}}(1-\cos \theta)$

Application γ gauss law
To hind eledine field due to a line charge
Consider an a line charge as shown in figure

$$
q=\lambda L \quad \lambda \rightarrow \begin{gathered}
\text { charge } \\
\text { per una }
\end{gathered}
$$

per and length

According to gauss law,

$$
\begin{equation*}
\phi=\frac{q}{\varepsilon_{0}} \tag{2}
\end{equation*}
$$

Comparing eq (1) and eq (2),

$$
\begin{aligned}
& \frac{q}{\varepsilon_{0}}=\epsilon \times 2 \pi r l \Rightarrow \epsilon=\frac{1}{2 \pi \varepsilon_{0}} \times \frac{\lambda}{r} \\
& \left.\frac{\lambda t}{\varepsilon_{0}}=\epsilon \times 2 \pi r t \quad \text { (by defuitiong } \lambda\right) .
\end{aligned}
$$

To find electric field due to an enfencte
sheet of charge
Consider a sheet of charge as shown in figure.

$$
q=\sigma \times A
$$

σ-charge per und area.

According to electric flux,

$$
\begin{aligned}
\phi & =\epsilon \times A \\
& =\epsilon \times 2 A \text { (A- area of circular portion) }
\end{aligned}
$$

According to gauss law,

$$
\begin{aligned}
& \phi=\frac{q}{\varepsilon_{0}} \\
& \Rightarrow \frac{q}{\varepsilon_{0}}=E \times 2 A \\
& \frac{\sigma \times \mathbb{A}}{\varepsilon_{0}}=E \times 2 \mathbb{A} \Rightarrow \epsilon=\frac{\sigma}{2 \varepsilon_{0}}
\end{aligned}
$$

